CSCI 5561 Project: Gesture Based Control for Commodity Hardware (Gesture
ReSIFT)

Grant Matthews
University of Minnesota
matth5360Qumn.edu

Abstract

This paper describes the creation of an algorithm to rec-
ognize gestures on commodity consumer hardware. It will
detail past work, baseline and proposed methods as well as
analyze the quantitative and qualitative results produced by
the algorithm.

1. Introduction

The most common and largest standard size computer
keyboard consists of 104 keys. However, there are 149,186
possible unicode characters and 1,000s of potential short-
cuts within a given host operating system. Currently, the
best way to access more than just 104 actions is through
the use of context menus and modifier keys, both of which
require the memorization of (potentially) complex strings
of actions and multiple keypresses and mouse movements.
This project’s goal is to take a computer’s webcam, a typi-
cally underutilized input device, and use it to add more than
104 one key (read motion) actions to a user’s computing
experience.

With the rise of the COVID-19 pandemic, industries and
educators around the world moved their operations online.
As a result, the demand for video conferencing hardware
and software skyrocketed. Even now in 2022 as the world
returns to face to face interaction, millions of people still
have access and regularly use a webcam for virtual interac-
tion. This project aims to take advantage of this opportu-
nity by building a simple, lightweight gesture control sys-
tem that utilizes a webcam to add additional controls to a
user’s computer.

The challenges that are proposed in this project are to
make the algorithm lightweight enough to essentially act
as a background process that will not slow down the user’s
computer, make the algorithm accurate enough to establish
user confidence in minimizing false positives which can dis-
orient and annoy the user. This report will analyze past
work, explain the proposed method for creating a gesture

Alex Lorimer
University of Minnesota

lorim007@umn.edu

control system, and examine the final implementation to de-
termine its success and viability for the average computer
user.

2. Methods and Past Work
2.1. Related and Past Work

There have been many different implementations of ges-
ture recognition in the past. As a way to better understand
and accomplish the project’s goals, the following were re-
viewed and summarized below.

One of the earliest forms of gesture recognition predated
the introduction of a computer webcam by about 10 years.
Gary Grimes created the Digital Data Entry Glove in 1983
which consisted of a glove with sensors to detect if they
were touching something. This was able to roughly ap-
proximate the 3D position of the wearer’s hand in a digital
form [4].

Conceptualized in 1980 and realized in 1994, the MIT-
LED glove was a series of LEDs embedded into a glove at
key hand locations such as joints and fingertips. This glove
was then worn in front of a camera capable of tracking and
representing the LED dots within a digital space [8].

Early camera based gesture recognition problems were
solved using multiple cameras to help with occlusion and
to recognize when two fingers might be behind each other.
One of the first successful implementations of this technol-
ogy called DigitEyes was capable of basic gesture recog-
nition on a simple background through the use of 2 cam-
eras [5].

In 1998, four researchers paved the way for modern ges-
ture recognition by developing a method to track hand ges-
tures without the use of multiple webcams or basic back-
grounds. They were able to track key points on the hand
and develop a list of possible positions for each digit just
as before. However, they then compared each possible po-
sition against a list of realistic hand positions to determine
the most likely position the hand was in. This demonstrated
the possibility of single camera gesture recognition without
the need for complex tracking [6].

A common form of pre-processing is skin segmentation.
This is the process of isolating the colors commonly found
in human skin and disregarding colors not a part of the hu-
man skin tone to focus on the hand making the gesture.
While relatively easy to detect using an RGB camera (like
a computer webcam) in a controlled environment, it is far
more difficult to detect human skin tones when a complex
background with colors similar to skin tones are present [7].
This is because not only are there other textures with a sim-
ilar color pallet such as wood or leather, but also because
of variations in lighting that can cause the skin to appear a
different shade.

This has been solved through the use of cameras that cap-
ture different light spectrums such YUV or HS(I, V or L).
Human skin tones contrast better with surrounding items
when viewed through cameras that capture in one of these
spectrums, thus making it easier to recognize a hand per-
forming a gesture [1] [2].

Feature extraction is commonly done using SIFT fea-
tures which is described in greater detail below. Further-
more, classification can be done numerous ways. Because
this project isn’t trying to classify an unknown gesture, but
rather trying to match it with an existing gesture, the clas-
sificationon step is more akin to a feature match which is
described in the proposed method below.

2.2. Baseline Method: SIFT

The project primarily makes use of the Scale Invariant
Feature Transform algorithm (SIFT) which can be broken
down into two sub algorithms that together create a list of
keypoints. These key points have a magnitude and location,
and can be compared to other key points in other images to
find similar features between the two images.

The first component of the SIFT algorithm is called
scale-space peak selection. Here the algorithm creates mul-
tiple octaves of an image, where each octave contains im-
ages that are half the size of the previous octave’s images.
Each octave is then progressively blurred using the Gaus-
sian method to create a 3D stack of same size images. This
is done to replicate a human’s ability to focus at scale. As
Deepanshu Tyagi [9] states, “you might see a sugar cube
perfectly on a table, but if looking at the entire milky way,
then it simply does not exist” BY shrinking the size of
the image, each pixel contains more and more information
about the original image, and thus the algorithm is looking
at more and more information with each octave.

Finally the pixel is compared to the 28 other pixels
around it in the 3D stack, and if it is a local maximum then
it (or it’s relative position in the original image) is added to
a list of potential key points. This list is refined during the
second component of the SIFT algorithm, key point local-
ization.

Key point localization is used to weed out pixels that do

«<—Second octave

First octave
S (didn't fit)

Figure 1. Example of Octaves used in the SIFT Algorithm (from
(oD

not lie on an edge and thus are not as important when de-
scribing the image. Here, the algorithm takes in the list of
potential key points as generated above and runs each pixel
through an edge detector, discarding the pixels that are not
along an edge. The final list of pixels is then considered the
key points of the image [3].

2.3. Proposed Method

One of the project’s most important goals is creating
an algorithm that is capable of running on commodity or
everyday consumer hardware in real time. Therefore this
project’s method needs to be a relatively simple algorithm
that is accurate without requiring GPU acceleration or multi
computer computation.

Our baseline method and approach uses the Scale Invari-
ant Feature Transformation (SIFT) feature matching algo-

Scale

(next
octave]

Scale
(first
aftave)

Difference of
Gaussian {DOG)

Figure 2. Octave Stacking for calculating Local Maxima (from [9]

rithm to figure out what gesture our user is making. There
are a few reasons why SIFT was selected over other poten-
tial algorithms. The most important of those reasons is the
speed at which it is possible to extract SIFT feature points
from an image. As described in the results section, extrac-
tion of SIFT features from even a relatively large image can
be done very quickly. This allows the algorithm to process
each frame produced by the user’s webcam against all the
saved gestures multiple times per second, enabling real time
registration and execution of a gesture’s saved action.

While using SIFT features allows for a quick algorithm,
use also allows for flexibility in the size of the images be-
ing compared. Each gesture is a user cropped sub frame
of a larger webcam produced frame but each time the algo-
rithm checks for a gesture it considers the whole webcam
frame. Many traditional and “fast” image comparison algo-
rithms require identical image dimensions between the two
images. Use of one of these algorithms would require split-
ting each webcam frame into sub images and then checking
each of those images against each of the gesture images.
With the goal of processing speed in mind, it was decided
that an algorithm that isn’t reliant on matching dimensions
would work best.

The method used by the project algorithm can be split
into two parts, the creation and storage of a gesture and the
continuous checking and execution of a gesture. When cre-
ating a gesture, the user has two seconds to position their
hand or other object in the webcam frame. The user’s we-
bcam then captures a reference frame, and asks the user to
draw a bounding box around the hand or object being used
as the gesture. The algorithm then uses OpenCV to extract a
list of SIFT features from the cropped image and then saves
those features along with a user defined action to a list of
saved gestures. This process can be seen in more detail in

User Selection of hand or object
Captured Image Cmpgeei IILT::QE of
SIFT Features of
Cropped Image

Figure 3. Flow Diagram for adding a gesture

\ [Execution of Action IF|
SIFT Features Match

Comparison of SIFT Features

SIFT Features of
Webcam Frame

SIFT Features

All Saved Gestures

SIFT Features

Figure 4. Flow Diagram for checking gesture matching

Figure 3.

The continuous recognition algorithm to detect a ges-
ture and execute its corresponding action analyzes each
frame (or a parameter defined number of frames per sec-
ond) to determine if a gesture is being performed by the
user. Each time a frame is analyzed, the algorithm first uses
the OpenCV library to generate a list of SIFT features from
the frame. The algorithm then iterates over the SIFT fea-
tures from each of the gesture images and selects the image
with the greatest number of matching features. If the confi-
dence of the algorithm is above the default or defined user
threshold, the algorithm executes the gesture’s action.

Our proposed method also wanted to increase our confi-
dence when we think a gesture is being made over the con-
ventional baseline SIFT feature matching method. The pro-
posed method does a brute force SIFT 2 feature K-nearest
neighbor feature match between our ground truth gesture
image and the input from our camera. We then filter out
the list of key points K-nearest neighbors for any points that
are “too far away” from each other for each feature match,
meaning that if the two nearest neighbors differ too much
in terms of their feature descriptors, then they were unlikely
to have been a match. After this, the average coordinates
of the filtered matched features are grabbed, then we we
check to see how many filtered features are left, if we have
over a threshold then grab a padded image around the cen-
tral coordinate from the camera input image, crop it, and
then repeat the process of a 2 feature K-Nearest neighbor
feature match between our cropped image and our ground
truth image, though this time through we have a relaxed ra-
tio multiplier between the distances because we are more
confident that we are looking at the part of the input image

Proposed Algorithm

(Baseline Method \

Run KNN SIFT
Feature Matching

Strictly filter matches
based based on nearest
neighbor pair

J

Mo Return 0%

Same Process
ignificant count of
good features?

| Get average of
: good points

Crop image
around centroid

Run KNN SIFT Feature
EEaEE TR Matching with Relaxed
filter multiplier

Return ratio of good features
matched to # of KP in Ground
truth

Figure 5. Proposed Algorithm Flowchart

that would contain the gesture.

A design choice that was mentioned was determining
whether or not to proceed to the second layer of the algo-
rithm which is the cropping of the input image and running
SIFT feature matching on the cropped sub image. The rea-

son that this was done is because while we were doing our
initial investigation and observing the baseline SIFT feature
matching method, we saw that in a complex environment
like a room full of different lighting features and objects
in the background would create false positives in the ini-
tial pass with a small matching list size. Adding this base
requirement helps reduce unnecessary work on false posi-
tives and ensure a greater confidence score when running
our proposed method.

The reason we crop the image is when we do the initial
feature match on the image that comes from the camera,
the section that we want to look at or may contain our fea-
ture may not contain a set of features large enough when
compared to the ground truth image to warrant significant
enough evidence that the two gestures are the same. An-
other reason is that this increase in accuracy comes with
minor to negligible increases in run time or work required
by the algorithm to process.

Figure 6. Skeleton algorithm application showing SIFT feature
matching for ground truth image and camera input

3. Results
3.1. Quantitative

For our testing, we used a skeleton application that uti-
lizes both the baseline and proposed method to compare
confidence scores between the two algorithms based on a
single baseline image and the camera input.

From 7, we can see how the confidence increases with
our cropping and reapplication of SIFT feature matching on
top of a strict SIFT K-NN feature match test. The scores
for the figure above are direct comparisons between the val-
ues within the same column. The red line near the bottom
of the table indicates the cutoff of if we are going to run
our proposed method on a cropped image. When the Sin-
gle SIFT (blue) dots yield a translated confidence ' below
this red line, we are not confident that the initial pass of sift

Because the number of good and filtered key points determines pro-

Baseline vs Proposed Confidence

o o
° o0 _o

)) L) .
. 0000 000 0000 0o00 0 0 o
Y) e 0o o

D © ooee
LT N o e
e e “”_ee o e 0 e
e ee o oo L

@Single SIFT @ SIFT with Cropping

Figure 7. Comparison between baseline SIFT feature matching
and proposed cropped SIFT feature matching confidence levels

feature matching yielded enough points near our desired in-
put gesture to do the crop and retest of SIFT on the cropped
image, therefor we just return a confidence score of zero.

The second goal that our proposed method needed to
achieve was that it does not slow down the machine that
it is using. From looking at the delay time between each
frame, for the two algorithms, we are not seeing a signif-
icant difference in time between frames for each method.
Though this may not make sense as since we are running
SIFT a second time, since the data set that we are running
SIFT on the second time is a smaller cropped image, its run
time is dramatically lower than SIFT on the initial full res-
olution image from the camera. This is also exaggerated by
the fact that the cropped SIFT algorithm does not fire ev-
ery check/frame, thus bringing down the average run time
of the added work.

3.2. Qualitative

There are two main metrics within the application of our
algorithm within our application program that contribute to
the feel and trust on the impact of the algorithm on the ap-
plication.

The first is reducing the number of false positive action
activations. Looking back at figure 7 we can see that the
proposed algorithm contributes to an increase in confidence
over the baseline which allows us to increase the required
confidence for an action to fire. While also testing the
baseline algorithm, we encountered a number of situations
where less complex [less features] gestures would cause an
increase in the activation of an action while no action was
present at the screen, or the area section it determined was
a gesture was seemingly random in the background.

The second contributing factor is the responsiveness of
the application to fire an action after a gesture is initially
made. From interacting with the application, both methods
had a quick response time after a gesture was made within
a negligible human perception time frame. This can be at-

ceeding with the proposed algorithm, this number directly translates to the
confidence score returned in the test

tributed to the lightweight nature of both algorithms com-
pounded with a camera that can video pictures up through
30 frames per second. Even if the algorithm does not get a
strong enough confidence score on the first or second frame,
the time to try for the next frame can be around 0.061ms
from our time testing, which is a negligible amount of time
in comparison.

4. Conclusion

In this project, we observed the shortcomings of using
SIFT feature matching as a gesture recognition algorithm
and improved on this by adding another layer of SIFT fea-
ture matching using a cropped feed from the initial SIFT
pass which helped us find our potential gesture to crop
around. Our proposed method showed an increase in con-
fidence score over the baseline method while also adding
negligible work on top for the computer to process, thus
keeping the responsiveness of the application at a higher
standard.

Given enough time, we can expand on the usability and
control that the user has over the software if we are able to
implement motion tracking of a gesture. Simple motion ac-
tivated gestures like waving a had to move forward or back-
wards between applications, or adding a feature to load an
save gestures/commands from a directory or file would be
very usefulto the repeated usability of the tool created here.

References

[1] L. Torres A. Albiol and E. Delp. Optimum color spaces for
skin detection. in: Proceedings of the international conference
on image processing, 2001. 2

[2] M.A. Mottaleb A. Senior, R.L. Hsu and A.K. Jain. Face de-
tection in color images, 2002. 2

[3] Crystal M. Dunxu H Ahmed, E. Skin detection-a short tu-
torial. encyclopedia of biometrics by springer-verlag berlin,
heidelberg, 2009. 2

[4] J. Davies and M. Shah. Recognizing hand gestures. eccv-94,
1994. 1

[5] Xu Guangyou Huang Yu and Zhu Yuanxin. Extraction of
spatial-temporal features for vision-based gesture recognition,
2000. 1

[6] Y. Kuno N. Shimada, Y. Shirai and J. Miura. Hand gesture
estimation and model refinement using monocular camera-
ambiguity limitation by inequality constraints. proceedings of
third ieee international conference on automatic face and ges-
ture recognition., 1998. 1

[7] P. Premaratne Q. Alshebani and P. Vial. An embedded door
access based on face recognition system: A survey. to appear
in (icspcs), 2013. 2

[8] J. Rehg and T. Kanade. Digiteyes: Vision-based human hand
tracking. proceedings of european conference on computer vi-
sion, 1994. 1

[9] Deepsanshu Tyagi. Introduction to sift(scale invariant feature
transform), 2019. 2, 3

	. Introduction
	. Methods and Past Work
	. Related and Past Work
	. Baseline Method: SIFT
	. Proposed Method

	. Results
	. Quantitative
	. Qualitative

	. Conclusion

